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Abstract
A third of patients with epithelial ovarian cancer (EOC) present ascites. The cellular fraction of ascites often consists
of EOC cells, lymphocytes, and mesothelial cells, whereas the acellular fraction contains cytokines and angiogenic
factors. Clinically, the presence of ascites correlates with intraperitoneal and retroperitoneal tumor spread. We have
used OV-90, a tumorigenic EOC cell line derived from the malignant ascites of a chemonaive ovarian cancer patient,
as a model to assess the effect of ascites on migration potential using an in vitro wound-healing assay. A recent
report of an invasion assay described the effect of ascites on the invasion potential of the OV-90 cell line. Ascites
sampled from 31 ovarian cancer patients were tested and compared with either 5% fetal bovine serum or no serum
for their nonstimulatory or stimulatory effect on the migration potential of the OV-90 cell line. A supervised analysis of
data generated by the Affymetrix HG-U133A GeneChip identified differentially expressed genes from OV-90 cells
exposed to ascites that had either a nonstimulatory or a stimulatory effect on migration. Ten genes (IRS2, CTSD,
NRAS, MLXIP, HMGCR, LAMP1, ETS2, NID1, SMARCD1, and CD44) were upregulated in OV-90 cells exposed to
ascites, allowing a nonstimulatory effect on cell migration. These findings were validated by quantitative polymerase
chain reaction. In addition, the gene expression of IRS2 andMLXIP each correlated with prognosis when their expres-
sion was assessed in an independent set of primary cultures established from ovarian ascites. This study revealed
novel candidates that may play a role in ovarian cancer cell migration.
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Introduction Montréal (Montreal, Quebec, Canada). Informed consent for this study

Ovarian cancer is the fifth cause of cancer-related deaths in woman
and the most lethal of all gynecological cancers. Largely asymptomatic,
more than 70% of patients with ovarian cancer have already reached an
advanced stage of disease at initial diagnosis [1,2], and the overall 5-year
survival rate for these patients is less than 30% [3]. Intraperitoneal dis-
semination is common, and malignant cells can implant anywhere in
the peritoneal cavity but are more likely to implant in sites of stasis
along the peritoneal fluid circulation [4]. Ascites, a voluminous exuda-
tive fluid with a cellular fraction consisting of ovarian cancer cells, lym-
phocytes, and mesothelial cells, is present in more than one-third of
ovarian cancer patients. The acellular fraction is known to harbor cyto-
kines and angiogenic factors [5–9]. Clinically, the presence of ascites
correlates with intraperitoneal and retroperitoneal tumor spread, sug-
gesting that it may facilitate metastasis [10].
Previously, we used an in vitro invasion assay to monitor the effect

of ascites on the potential of chemonaive epithelial ovarian cancer
(EOC) cell lines to degrade and migrate across a Matrigel-based bar-
rier [11]. We used the OV-90 cell line to perform our assays. This
cell line is derived from an ovarian malignant ascites, is able to form
tumors in a xenograft model, and has been extensively characterized
at both the cellular and the molecular levels [11–13]. Ascites from
more than 50 patients were tested and compared with either 5% fetal
bovine serum (FBS) or no serum in an invasion assay. The ascites
were classified into one of two categories for their effect on invasion
on the basis of comparison to FBS-treated cells: stimulatory (≥5%
FBS activity) or nonstimulatory (<20% of FBS activity). We focused
on gene expression profiles generated from the OV-90 cell line [12]
treated with ascites possessing either stimulatory or nonstimulatory
invasive potential. A supervised analysis of gene expression micro-
array data sets identified differentially expressed genes, which were
validated by quantitative polymerase chain reaction (Q-PCR) assays
on the basis of OV-90 cells exposed to a large number of ascites from
different patients. In a previous study [11], the proliferation rates and
the capacity to form three-dimensional spheroids in hanging drop
cultures of the OV-90 cell line treated with different ascites were also
described. The results from this previous study strongly supported
the notion that ascites affect the cellular and molecular behaviors
of ovarian cancer cells.
In the present study, we have further assessed the effect of the same

ascites samples on the migration potential of OV-90 cells using an
in vitro wound-healing assay and extended our analysis to include a
larger number of ascites samples derived from ovarian cancer patients.
We also assessed differential gene expression using OV-90 cells treated
with no serum, with 5% of ascites, or with 5% FBS that correlated
with the cellular migration potential of this cell line. Some candidate
genes identified in our analysis were further validated using Q-PCR,
and their association with survival was tested in an independent set of
primary cultures derived from ovarian cancer patients with ascites.

Materials and Methods

Cell Culture Conditions, Material, and Patients
OV-90 cells were maintained in ovarian surface epithelium (OSE)

complete medium (cat. no. 316-030-CL; Wisent, Quebec, Canada)
supplemented with 10% FBS, 2.5 μg/ml of amphotericin B (Wisent),
and 50 μg/ml of gentamicin (Invitrogen, Ontario, Canada) at 37°C
[14]. Ascites were collected at the time of clinical intervention from
ovarian cancer patients at the Centre hospitalier de l’Université de
was obtained from all of the patients. After centrifuging at 1250g for
5 minutes, the acellular fractions of ascites were stored at −20°C and
testedwithin 6months of collection.Histopathological diagnosis, grade,
and stage of ovarian tumor samples were assigned according to the
criteria of the International Federation of Gynecology and Obstetrics.
Of the 31 ascites samples, one third were from patients diagnosed with
papillary serous adenocarcinoma andmost presented as stage IIIC grade 3
tumordiseases (Table 1). A small proportion (4/31) of patients had already
received chemotherapy before ascites collection. The cohort of patients
with ovarian cancer and the accompanying ascites used for this research
and included in the survival analysis have been described previously [11].

In Vitro Migration Assays
Cellular migration was assayed by determining the ability of cells

to migrate in a culture plate using a wound-healing assay. To evaluate
migration assays, OV-90 cells were plated in 12-well dishes and were
grown at 37°C until confluent. Cell monolayers were scraped using
a sterile 200-μl yellow plastic tip to produce small wounds of simi-
lar size. Wounded monolayers were then washed with phosphate-
buffered saline to remove cell debris, and OSE medium was added
with no serum or with either 5% FBS or 5% ascites. For inactivation
assays, ascites were heated for 10 minutes at 100°C to denature the
proteins. Cells were incubated at 37°C under 5% CO2 for different
lengths of time to evaluate their migration (0, 6, 24, 30, 48, and
54 hours after scratch formation). At the different time points, cells
were methanol-fixed and treated with Giemsa stain (Sigma-Aldrich,
Inc, St Louis, MO). Digital images were obtained at each time point
of the experiment. Images were analyzed, and wound closures were
quantified using Image Pro Plus software (Version 5.1; MediaCyber-
netics, Bethesda, MD) and Microsoft Excel. All experiments were
performed twice using triplicate samples and were normalized to
FBS-treated cultures.

RNA Preparation
Total RNA was extracted using TRIzol reagent (Gibco/BRL, Life

Technologies, Inc, Grand Island, NY) according to the manufacturer’s
protocol. RNA was extracted from OV-90 cells grown to 80% conflu-
ence in 100-mm Petri dishes. The quality of RNA was assessed using a
2100 Bioanalyzer with the RNA 6000 Nano LabChip kit (Agilent
Technologies, Mississauga, Ontario, Canada) according to the manu-
facturer’s protocol.

Microarray hybridization experiments were performed at McGill
University and the Genome Quebec Innovation Center (Montreal,
Quebec, Canada) using the HG-U133A GeneChip arrays. This chip
allows the analysis of approximately 18,400 transcripts and variants,
including 14,500 well-characterized human genes, composed of more
than 22,000 probe sets. Protocols are available at the Affymetrix Web
site (www.affymetrix.com; Affymetrix, Santa Clara, CA). Methods for
labeling and hybridization of RNA were previously described [11].

Gene Expression Statistical Analysis
Gene expression profiles were analyzed using R (version 2.4.0;

www.r-project.org), a statistical programming language, Bioconductor
[15], and an open-source software library for the analyses of genomic
data, which is based on R. Background subtraction, normalization
(quantile normalization), and expression value calculations were per-
formed using the justGCrma function available as part of the Biocon-
ductor’s gcrma package. Bioconductor’s gene filter package was used to
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filter genes with insufficient variation in expression across all samples
tested. Expression values retained after this filtering process had inten-
sities greater than 100 units in at least two samples and a log base 2 scale
of at least 0.2 for the interquartile range across all tested samples. Dif-
ferentially expressed genes were identified using Bioconductor’s limma
package that implements moderate t tests by fitting a linear model for
each group of samples and using empirical Bayes method to moderate
SEs of the estimated log-fold changes between the predefined groups.

Kaplan-Meier survival plots, univariate Cox proportional hazard
regressions, as well as log-rank tests were performed to determine
the significance of using gene expression levels to predict survival
of EOC patients as described earlier [11]. The expression threshold
cutoff was determined by survival tree using the recursive partition-
ing and regression tree (RPART) method [16]. The survival analysis
and tree building were performed using R’s survival and RPART
packages, respectively. The Pearson correlation coefficient test (two-
tailed) was used to calculate the correlation between gene expression
and migration rate and was performed with SPSS software 11.0
(SPSS, Inc, Chicago, IL).

Quantitative Reverse Transcription–PCR Validation
The complementary DNA synthesis was prepared using the

QuantiTech Reverse Transcription for two-step reverse transcription–
PCR (Qiagen, Inc, Mississauga, Ontario, Canada) according to the
manufacturer’s instruction. First-strand synthesis for reverse transcription–
PCR was performed with 1 μg of RNA and a mix of Oligo dT and
random hexamers. Samples were diluted 1:10 in water before Q-PCR.
Q-PCR was performed using Rotor-gene 3000 (Corbett Research,
Montreal Biotech, Inc, Montreal, Quebec, Canada). The Quantitect
SYBR Green PCR (Qiagen, Inc) reaction mixture was used to label
5 μl of sample complementary DNA and 10 pg of the different primers
in a final volume of 25 μl. Reactions were performed at least twice
according to the manufacturer’s instructions. Serial dilutions were per-
formed to generate a standard curve for each gene tested to define the
efficiency of the Q-PCR, and a melt curve was constructed to confirm
reaction specificity. The analytical method of Pfaffl [17] was used to
measure the relative quantity of gene expression. The first sample (with
5% FBS) served as the reference sample in each experiment. Gene ex-
pression was evaluated in the OV-90 cell line with no serum or with
either 5% FBS or 5% ascites, under the same conditions used to eval-
uate the migration potential of the OV-90 cell line. β-Actin was used as
reference gene on the basis of its stable expression in all samples by
microarray analysis. For every marker, a Pearson correlation was calcu-
lated between the scored migration result (1 < 100% and 2 ≥ 100% of
migration) and the scored gene expression (1 < median and 2 ≥median).
All experiments were performed in duplicate.
Results

Effect of Ascites on OV-90 Migration Potential
Ascites from 31 EOC patients were studied to determine their

effect on OV-90 cell migration in an in vitro scratch assay (Table 1
and Figure 1). Cells were grown in a monolayer until confluence in a
Table 1. Compiled Clinical Characteristics of Patients from Which Ascites Were Obtained.
Ascites
 Age (years)
 Histopathological Diagnosis
 Grade
 Stage
 Neoplastic Cells in Ascites
 Previous Chemotherapy
 Ascites Collected
A3331
 73
 AC
 N/S
 IIIC
 N/S
 N/S
 N/S

A3312
 62
 MCT
 0
 N/S
 Yes
 N/S
 Primary surgery

A3294
 38
 PSA
 3
 IIIC
 Yes
 No
 Primary surgery

A3258
 58
 MMT
 3
 IIIC
 Yes
 No
 Primary surgery

A3203
 77
 PSA
 3
 IV
 Yes
 No
 Primary surgery

A3133
 52
 PSA
 3
 IIIC
 Yes
 No
 Secondary cytoreduction

A2965
 70
 MCA
 3
 IIIC
 Yes
 No
 Primary surgery

A2912
 53
 PSA
 3
 IIIC
 Yes
 No
 Primary surgery

A2910
 65
 OT
 N/S
 N/S
 No
 N/S
 Primary surgery

A2891
 50
 MCA
 3
 IC
 N/S
 No
 Primary surgery

A2839
 54
 SA
 3
 IV
 N/S
 No
 Primary surgery

A2834
 62
 PSA
 3
 IIIC
 Yes
 No
 Primary surgery

A2775
 48
 PSA
 2
 IIIC
 Yes
 No
 Primary surgery

A2774
 41
 EA
 3
 IB
 N/S
 No
 Primary surgery

A2685
 61
 PSC
 N/S
 N/S
 No
 N/S
 Primary surgery

A2652
 49
 MCT
 0
 N/S
 N/S
 N/S
 Primary surgery

A2647
 68
 SA
 3
 III
 Yes
 N/S
 Primary surgery

A2635
 50
 MC
 N/S
 N/S
 N/S
 N/S
 Primary surgery

A2473
 71
 MpA
 2
 IIIC
 Yes
 No
 Primary surgery

A2433
 50
 MCT
 0
 IA
 No
 N/S
 Primary surgery

A2427
 70
 AF
 N/S
 IB
 N/S
 N/S
 Primary surgery

A2295
 59
 SA
 3
 IIIC
 Yes
 No
 Primary surgery

A2295(2)*
 59
 SA
 3
 IIIC
 Yes
 Yes
 Secondary cytoreduction

A2090†
 76
 UA
 N/S
 IIIC
 N/S
 Yes
 N/S

A2085†
 65
 PSA
 3
 IIIC
 N/S
 Yes
 Secondary cytoreduction

A1946†
 75
 PSA
 3
 IIIC
 Yes
 No
 Primary surgery

A1835†
 69
 PSA
 3
 IIIC
 Yes
 No
 Primary surgery

A1592†
 35
 MCA
 3
 IIIC
 N/S
 No
 Primary surgery

A1337†
 45
 PSA
 3
 IIIC
 Yes
 No
 Primary surgery

A1322†
 71
 PSA
 3
 IIIC
 Yes
 No
 Primary surgery

A1317†
 60
 PSA
 3
 IV
 No
 Yes
 Primary surgery
AC indicates adenocarcinoma; AF, adenofibroma; EA, endometrioid adenocarcinoma; MC, mucinous cystadenoma; MCA, mixed cell adenocarcinoma; MCT, mucinous cystic tumor in extreme cases of
the malignity; MMT, mixed mullerian tumor; MpA, mucipare adenocarcinoma; MsA, mucinous adenocarcinoma; N/S, not specified; OT, ovarian torsion; PSA, papillary serous adenocarcinoma; PSC,
papillary serous cystadenoma; SA, serous adenocarcinoma; SC, serous cystadenoma; UA, undifferentiated adenocarcinoma.
*Denotes second ascites collected from patient with the same number.
†Results previously reported in Puiffe et al. [11].
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12-well plate. After scratching the monolayer with a pipet tip, cells
were maintained in medium with or without 5% FBS. To test the
effect of ascites, FBS was replaced by 5% ascites (acellular fraction)
from EOC patients and sampled after 0, 6, 24, 30, 48, and 54 hours
of incubation. OV-90 cells are able to seal the wound in 48 hours,
similar to the average seen in comparable EOC cell lines [18]. The
influence of each ascites sample on cell migration was scored in
comparison to medium supplemented with 5% FBS (Figure 1). In
OV-90 cells, a difference in cell migration was observed between cells
in contact with medium alone and cells in medium supplemented
with 5% FBS. When cells were incubated with the medium without
FBS (Figure 1B), cell migration was reduced by 40% in comparison
to 5% FBS. In contrast, a large number of ascites samples (n = 23)
stimulated OV-90 cell migration at levels similar to 5% FBS (Fig-
ure 1B). A smaller number of ascites samples (n = 8) did not stimulate
cell migration when compared with migration in the presence of FBS
(Figure 1B).
To determine whether the migration effect of ascites is protein

component-dependant, two stimulatory and two nonstimulatory as-
cites were selected and heated for 10 minutes at 100°C before adding
to the OV-90 cell cultures (Figure 2). The results suggest that protein
Figure 1. Effect of ascites on OV-90 cell migration. Migration was a
plate using a wound-healing assay in the presence of ascites compa
symbol “0” indicates medium without ascites or FBS. (A) Effect of FBS
with OSE medium in the presence or absence of 5% FBS or with 5%
potential. (D) Migration profile of OV-90 with OSE medium in the pres
nificance, P < .05.
inactivation abolished the stimulatory effect (FBS, A2647 and A2839).
For the two nonstimulatory ascites, samples A2295(2) and A2090,
we also observed a decreased effect on cell migration from ascites that
had been heat-treated. The pH of FBS and the four ascites was not
altered by heating (data not shown).

Effect of Ascites on Gene Expression in OV-90 Cells
To identify potential molecular players in migration regulated by

ascites, gene profiling analysis was performed. Total RNA was ex-
tracted from OV-90 cells after a 24-hour exposure to no serum,
5% FBS, or 5% of one of eight ascites sampled from ovarian cancer
patients as previously described (Table 1) [11]. The RNA samples
were each hybridized on Affymetrix HG-U133A GeneChip arrays,
and gene expression profiles were analyzed using 6489 probe sets
(see Materials and Methods). A supervised analysis was performed
using expression data sets representing the following groups. The
GSTIMUL group contained the ascites (A1946, A1835, A2085,
A1337, and A1592) that stimulated cell migration and included the
5% FBS control. The GnSTIMUL group contained ascites (A1322,
A1317, and A2090) that demonstrates less cell migration and included
the no-FBS sample. This supervised analysis identified 129 genes that
ssessed by determining the ability of cells to migrate in a culture
red with 5% FBS (% migration) after 54 hours of incubation. The
and ascites on OV-90 cell migration. (B) Migration profile of OV-90
of several ascites. (C) Effect of 31 ascites on OV-90 cell migration
ence or absence of 5% FBS or with 5% of ascites. *Statistical sig-



Figure 2. Effect of heat-treated ascites in OV-90 cell migration as-
says in vitro. Both stimulatory (A2647 andA2839) and nonstimulatory
(A2295(2) and A2090) ascites were heated at 100°C for 10 minutes
to inactivate the proteins before adding to OV-90 cell culture media.
The effect on cell migration was subsequently evaluated. *P < .05,
**P < .01.
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were differentially expressed (P < .05, t test) between the GSTIMUL
and GnSTIMUL groups (Table 2).

Differential Expression Validation of Selected Candidates
by Q-PCR

Forty gene candidates involved in the migration potential of OV-90
cells were selected for further validation by Q-PCR on the basis of their
P values obtained in the previous microarray analysis and also on their
gene functions.The candidates tested byQ-PCRaredescribed inTable 2.
Of the 40 selected genes, 21 were downregulated in the GnSTIMUL
group (HIST1H2AC, F1P1L1, RBM10, H2BS, BTG3, CNTNAP2,
IGF1R, DKC1, HIST1H2BD, CDCA4, MDC1, SMARCD3, TSTA3,
SMARCD2, PDPK1, ADAMTS1, ASH2L, SMARCA4/BRG1,
CMKOR1, ANAPC5, and GPR125) and 19 were upregulated in the
GnSTIMUL group (HSPA1B, CALM3, IRS2, CBFB, CEBPA, LIPG,
CRLF1, MDK, CTSD, NRAS, MLXIP, HMGCR, CALM1, LAMP1,
MKRN1, ETS2, NID1, SMARCD1, and CD44 ). Q-PCR was per-
formed on RNA derived from OV-90 cells exposed individually to the
entire panel of 31 ascites (Table 1). The relative expression ratio of each
candidate, based on the Pfaffl method, was quantified, and for each ex-
periment, the median ratio was calculated, and the result was categorized
as above or below the median expression. Pearson correlations were
calculated for the migratory effect (stimulatory or nonstimulatory) of
each ascites with a gene expression score, as shown in Table 3. Of the
40 candidates, 10 (IRS2, CTSD, NRAS, MLXIP, HMGCR, LAMP1,
ETS2,NID1, SMARCD1, and CD44 ) tested by Q-PCR correlated sig-
nificantly with the ascites migration effect. Three candidates (MDC1,
SMARCA4, and GPR125) correlated significantly, but their down-
regulated expression pattern by Q-PCR was in the opposite direction
expected from the microarray expression analysis.

Survival
In a previous study [11], we showed that the genes exhibiting a

significant correlation with ascites invasion effect could be good prog-
nosis predictors. The prognostic potential of the candidate genes that
Q-PCR expression correlated significantly with the ascites migration
effect was evaluated using microarray expression in 28 primary cultures
derived from the cellular fraction of ascites of ovarian cancer patients.
A survival tree was used to determine the expression cutoff that could
lead to the identification of prognostic groups among patients. In the
case of IRS2 andMLXIP, Kaplan-Meier curves coupled with a log-rank
test identified a patient group with an overall good survival rate asso-
ciated with a high expression (Figure 3). A trend toward significance
was observed for the HMGCR candidate, although its association be-
tween gene expression and patient survival was not significant (P =
.061; Figure 3).
Discussion
EOC is the secondmost common gynecological cancer and accounts for
more than half of the deaths associated with gynecological pelvic malig-
nancies [19,20]. This gynecological malignancy is associated with vague
symptoms, which results in a diagnosis at a late stage [2]. The need for
reliable biomarkers in ovarian cancer detection is increasing because
EOC mortality has not significantly decreased during the past years
because of a poor understanding of the biology [4]. Although ascites
are commonly found in patients with EOC, its association with a poor
prognostic factor is not universally accepted, and mechanisms that lead
to ascites formation are not well characterized in EOC [10,21,22]. The
presence of ascites correlates with intraperitoneal and retroperitoneal
tumor spread, which supports a role inmetastasis [2,10]. It is also known
that ascites contain factors that increase vascular permeability [5]. In this
study, we assessed the effects of ascites on OV-90 cell migration and cor-
related this effect with the alteration of gene expression that occurred in
the same cell line as a consequence of exposure to several heterologous
ascites obtained in different clinical settings (Table 1) [12].

In control tests, the presence of FBS in culture medium stimulated
the cellular migration of the OV-90 cell line. An analysis of the migra-
tion behavior of OV-90 with 31 different ascites showed that more than
two-thirds of the ascites samples stimulated cell migration in a fashion
similar to the serum control. In contrast, one-third of the ascites did not
stimulate migration in a fashion similar to the non-FBS control. Of
the ascites samples collected from the same patient (A2295 and
A2295(2), respectively) but at different times during the course of
her treatment, it is interesting that the prechemotherapy ascites stimu-
lated cell migration, whereas the postchemotherapy ascites inhibited
cell migration. This observation raises the intriguing possibility that
chemotherapy treatment is associated with a diminution of tumor cell
migratory potential but requires validation with a larger sample set.

In a previous study, we determined how ascites affected the inva-
sive capacity of OV-90 cells [11]. Because several of the ascites tested
in that study were also tested in the present study, we looked for cor-
relations between the migration and invasion results. Although some
ascites were able to increase both the migratory and the invasive prop-
erties of OV-90 cells, no correlation was observed between ascites stim-
ulating migration and invasion (data not shown), suggesting that these
two events are activated by different stimuli. Both the stimulatory and
nonstimulatory effects of selected ascites and FBS were lost when the
samples were heated. With this treatment, the results were similar to
those observed with the medium lacking FBS, suggesting that the ef-
fects of FBS and both stimulatory and nonstimulatory ascites were
due to the presence of a protein or a protein component rather than
other soluble factors.

Gene expression was assessed to link molecular events with the
migration effect of ascites. For this purpose, RNA from OV-90 cells
exposed to five stimulatory ascites or 5% FBS (GSTIMUL) were
compared with RNA from cells in the absence of serum or treated
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Table 2. List of Differentially Expressed Genes among the GSTIMUL and GnSTIMUL Groups That Were Tested in Q-PCR.
P
 Gene Expression
Level in the
GnSTIMUL*
Probe
Set
HG-U133A
UniGene
 Description
 Symbol
 Molecular Function (Gene Oncology)
 Cytoband
.004
 Down
 215071_s_at
 Hs,484950
 Histone 1, H2ac
 HIST1H2AC
 DNA binding
 6p21,3
.004
 Down
 221007_s_at
 Hs,518760
 FIP1-like 1 (Saccharomyces cerevisiae)
 FIP1L1
 RNA binding
 4q12
.018
 Down
 208984_x_at
 Hs,401509
 RNA binding motif protein 10
 RBM10
 RNA/metal ion binding
 Xp11,23
.020
 Down
 208579_x_at
 Hs,473961
 H2B histone family, member S
 H2BFS
 DNA binding
 21q22,3
.027
 Down
 213134_x_at
 Hs,473420
 BTG family, member 3
 BTG3
 Not available
 21q21,1-q21,2
.028
 Down
 219300_s_at
 Hs,190621
 Contactin-associated protein-like 2
 CNTNAP2
 Protein binding
 7q35-q36
.029
 Down
 203628_at
 Hs,592020
 Insulin-like growth factor 1 receptor
 IGF1R
 Nucleotide/protein binding, receptor
activity, ATP binding
15q26,3
.030
 Down
 201478_s_at
 Hs,4747
 Dyskeratosis congenita 1, dyskerin
 DKC1
 Telomerase activity/RNA binding
 Xq28
.032
 Down
 209911_x_at
 Hs,591797
 Histone 1, H2bd
 HIST1H2BD
 DNA binding
 6p21,3
.032
 Down
 218399_s_at
 Hs,34045
 Cell division cycle–associated 4
 CDCA4
 Not available
 14q32,33
.035
 Down
 203062_s_at
 Hs,632002
 Mediator of DNA damage checkpoint 1
 MDC1
 Protein binding
 6pter-p21,31
.036
 Down
 204099_at
 Hs,438823
 SWI/SNF–related, matrix-associated,
actin-dependent regulator of
chromatin, subfamily D, member 3
SMARCD3
 Transcription activity, receptor binding
 7q35-q36
.036
 Down
 36936_at
 Hs,404119
 Tissue-specific transplantation
antigen P35B
TSTA3
 Catalytic activity, isomerase activity
 8q24,3
.040
 Down
 201827_at
 Hs,250581
 SWI/SNF–related, matrix-associated,
actin-dependent regulator of
chromatin, subfamily D, member 2
SMARCD2
 Transcription coactivator activity,
protein binding
17q23-q24
.040
 Down
 204524_at
 Hs,459691
 3-Phosphoinositide-dependent protein
kinase-1
PDPK1
 Nucleotide/Protein binding, protein
kinase activity
16p13,3
.040
 Down
 222162_s_at
 Hs,534115
 ADAM metallopeptidase with
thrombospondin type 1 motif, 1
ADAMTS1
 Peptidase activity, integrin binding
 21q21,2
.044
 Down
 209517_s_at
 Hs,521530
 ash2 (absent, small, or homeotic)-like
(Drosophila)
ASH2L
 DNA/metal ion/promoter/protein binding,
histone methyltransferase activity,
transcription regular activity
8p11,2
.046
 Down
 212520_s_at
 Hs,327527
 SWI/SNF–related, matrix-associated,
actin-dependent regulator of chromatin,
subfamily A, member 4
SMARCA4
 DNA/Protein binding, transcription
factor activity
19p13,2
.047
 Down
 212977_at
 Hs,471751
 Chemokine orphan receptor 1
 CMKOR1
 Signal transducer activity, receptor activity
 2q37,3
.048
 Down
 211036_x_at
 Hs,7101
 Anaphase-promoting complex subunit 5
 ANAPC5
 Ubiquitin-protein ligase activity, binding
 12q24,31
.050
 Down
 210473_s_at
 Hs,99195
 G protein–coupled receptor 125
 GPR125
 Actin/protein binding
 4p15.31
.002
 Up
 202581_at
 Hs,274402
 Heat shock 70-kDa protein 1B
 HSPA1B
 Nucleotide binding, ATP binding
 6p21,3
.019
 Up
 200622_x_at
 Hs,515487
 Calmodulin 3 (phosphorylase kinase, delta)
 CALM3
 Calcium ion binding, protein binding
 19q13,2-q13,3
.019
 Up
 209185_s_at
 Hs,442344
 Insulin receptor substrate 2
 IRS2
 Signal transducer activity, receptor activity,
protein binding, cell proliferation
13q34
.021
 Up
 206788_s_at
 Hs,460988
 Core-binding factor, beta subunit
 CBFB
 Transcription factor activity, protein binding
 16q22,1
.026
 Up
 204039_at
 Hs,643434
 CCAAT/enhancer binding protein
(C/EBP), alpha
CEBPA
 DNA binding, transcription factor activity,
RNA pol II transcription factor
19q13,1
.027
 Up
 219181_at
 Hs,465102
 Lipase, endothelial
 LIPG
 Catalytic activity, protein binding
 18q21,1
.028
 Up
 202046_s_at
 Hs,509447
 Glucocorticoid receptor DNA binding
factor 1
GRLF1
 Nucleotide binding, DNA binding, receptor
activity, GTP binding
19q13,3
.038
 Up
 209035_at
 Hs,82045
 Midkine (neurite growth-promoting
factor 2)
MDK
 Cytokine activity, growth factor binding
 11p11,2
.039
 Up
 200766_at
 Hs,121575
 Cathepsin D (lysosomal aspartyl peptidase)
 CTSD
 Peptidase/hydrolase activity
 11p15,5
.042
 Up
 202647_s_at
 Hs,486502
 Neuroblastoma RAS viral (v-ras)
oncogene homolog
NRAS
 Nucleotide/GTP binding, GTPase activity
 1p13,2
.043
 Up
 202519_at
 Hs,437153
 MLX-interacting protein
 MLXIP
 DNA binding, transcription regulator activity
 12q24,31
.045
 Up
 202540_s_a
 Hs,643495
 3-Hydroxy-3-methylglutaryl-coenzyme
A reductase
HMGCR
 Oxidoreductase activity, NADP binding
 5q13,3-q14
.045
 Up
 211985_s_at
 Hs,282410
 Calmodulin 1 (phosphorylase kinase, delta)
 CALM1
 Calcium ion binding, protein binding
 14q24-q31
.046
 Up
 201552_at
 Hs,494419
 Lysosomal-associated membrane protein 1
 LAMP1
 Not available
 13q34
.046
 Up
 201285_at
 Hs,490347
 Makorin, ring finger protein, 1
 MKRN1
 Chromatin binding, ligase activity, metal ion
binding, nucleic acid/protein binding
7q34
.048
 Up
 201329_s_at
 Hs,517296
 v-ets Erythroblastosis virus E26 oncogene
homolog 2 (avian)
ETS2
 DNA binding, transcription factor activity
 21q22,3
.048
 Up
 202008_s_at
 Hs,356624
 Nidogen 1
 NID1
 Calcium ion binding, protein binding,
extracellular matrix structural constituent
1q43
.048
 Up
 203183_s_at
 Hs,79335
 SWI/SNF–related, matrix-associated,
actin-dependent regulator of chromatin,
subfamily D, member 1
SMARCD1
 Transcription coactivator activity
 12q13-q14
.049
 Up
 210916_s_at
 Hs,502328
 CD44 molecule (Indian blood group)
 CD44
 Receptor activity, protein binding
 11p13
The GSTIMUL group consists of OV-90 samples with 5% FBS or with 5% of five ascites that stimulated cell migration (A1337, A1592, A1835, A1946, and A2085). The GnSTIMUL group consists of
OV-90 samples with no FBS or with 5% of the three ascites that did not stimulate cell migration (A1317, A1322, and A2090).
*All upward or downward changes observed in the gene expression levels were determined by microarray data using the Affymetrix HG-U133A GeneChip array and subsequently confirmed by Q-PCR. Up
refers to the gene expression level being higher in the GnSTIMUL group than in the GSTIMUL. Down refers to the gene expression level being lower in the GnSTIMUL group than in the GSTIMUL.
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with three nonstimulatory ascites (GnSTIMUL). Microarray analysis
identified 129 genes differentially expressed between the group of as-
cites that stimulated cell migration and the group that did not stimulate
cell migration. Among those genes, 40 were tested in Q-PCR. Pearson
correlations were calculated for themigratory effect (stimulatory or non-
stimulatory) of each ascites with a gene expression score, as shown in
Table 3. Among theses 40 genes, differential expression of 13 candidates
was confirmed by Q-PCR in a larger set of 31 ascites samples (Table 3).
Three candidates correlated significantly, but the expression pattern was
opposite to that expected by microarray analysis. Of 27 additional can-
didates tested by Q-PCR, no significant correlation between gene
expression and OV-90 cell migration could be established. The fact that
the differential expression of these genes was identified by microarray
analysis on a limited number of ascites samples (only eight), although
the validation was tested on 31 different ascites, could explain this poor
validation rate. These results also suggest that an extensive validation in a
supervised analysis by Q-PCR of gene candidates is essential to uncover
the richness of genes implicated in migration process.

Many genes differentially expressed in cells stimulated by the two
groups of ascites are closely related to the mitogen-activated protein
kinase (MAPK) pathway and apoptosis. A similar association between
MAPK-related genes and invasion was also observed in our recent
study [11], although different gene candidates were identified. In the
present study, the MAPK pathway–related genes include NRAS, ETS2,
Cathepsin D (CSTD), andHMGCR. Interestingly, recent studies suggest
that Cathepsin D could be responsible for the positive regulation of pro-
liferation, survival, motility, and invasion of fibroblasts by triggering ac-
tivation of ras/MAPK/Rds [23]. The Ras proteins were some of the first
proteins identified involving the regulation of cell growth [24]. Nearly
30% of human cancers are associated with mutations in the Ras genes
[25]. In ovarian cancer research, Ahmed et al. [26] showed that ascites
enhanced the activation of Ras by increasing Ras-GTP levels in the study
of four ovarian cancer cell lines. This study also presented evidence that
activation of Ras and downstream Erk pathway is involved in maintain-
ing growth, adhesion, and invasiveness of cancer cells. It was also recently
shown that a high expression of HMG-CoA reductase (HMGCR) in-
duced acceleration of the cholesterol synthesis pathway in cancer cells,
and this may have promoted Ras isoprenylation, a posttranslational
modification activating Ras [27]. In addition, the Ras–MAP kinase
signaling pathway leads to the phosphorylation of ETS transcription
Table 3. Correlation between Migration and Gene Expression.
Genes
 Median of Ratio in the GSTIMUL*
 Median of Ratio in the GnSTIMUL*
 Pearson Correlation
 P
HIST1H2Ac
 1.14
 1.37
 −0.160
 .389

FIP1L1
 0.36
 0.54
 −0.160
 .389

RBM10
 0.41
 0.47
 −0.160
 .389

H2BFS
 0.81
 0.81
 −0.022
 .905

BTG3
 0.80
 0.71
 −0.160
 .389

CNTNAP2
 0.85
 1.01
 −0.298
 .103

IGF1R
 0.52
 0.67
 −0.298
 .103

DKC1
 0.60
 0.61
 −0.298
 .103

hist1h2bd
 0.79
 1.12
 −0.298
 .103

CDCA4
 1.08
 1.38
 0.116
 .535

MDC1
 1.02
 1.38
 −0.437†
 .014

SMARCD3
 0.68
 0.86
 −0.254
 .168

TSTA3
 0.66
 0.55
 0.116
 .535

SMARCD2
 0.98
 1.14
 −0.160
 .389

PDPK1
 0.41
 0.61
 −0.160
 .389

ADAMTS1
 0.36
 0.48
 −0.160
 .389

ASH2L
 0.89
 1.01
 −0.298
 .103

SMARCA4
 0.68
 0.76
 −0.437†
 .014

CMKOR1
 0.41
 0.52
 −0.160
 .389

ANAPC5
 0.58
 0.76
 −0.160
 .389

GPR125
 1.00
 0.80
 −0.437†
 .014

HSPA1B
 1.00
 1.49
 −0.160
 .389

CALM3
 1.14
 1.53
 −0.254
 .168

IRS2
 1.60
 2.49
 −0.437†
 .014

CBFB
 0.74
 0.83
 −0.160
 .389

CEBPA
 0.58
 0.58
 0.254
 .168

LIPG
 0.37
 0.66
 0.116
 .535

GRLF1
 0.80
 0.84
 −0.160
 .389

MDK
 0.52
 0.82
 −0.298
 .103

CTSD
 1
 1.64
 −0.437†
 .014

NRAS
 0.74
 1.04
 −0.437†
 .014

MLXIP
 0.53
 0.84
 −0.437†
 .014

HMGCR
 0.59
 1.25
 −0.392†
 .029

CALM1
 1.14
 1.53
 −0.298
 .103

LAMP1
 1.00
 1.57
 −0.392†
 .029

MKRN1
 1.00
 1.16
 −0.116
 .535

ETS2
 0.47
 0.83
 −0.575‡
 .001

NID1
 0.56
 0.72
 −0.437†
 .014

SMARCD1
 0.99
 1.22
 −0.575‡
 .001

CD44
 0.39
 0.58
 −0.392†
 .029
Pearson correlations were calculated between scored migration results (1 < 100% of migration and 2 ≥ 100% of migration) and scored genes expression (1 < median and 2 ≥ median) for the 40 candidates
quantified by Q-PCR.
*Gene expression ratio relative to OV-90 stimulated with FBS.
†Correlation is significant, P = .05.
‡Correlation is significant, P = .01.



Figure 3. Relationship between IRS2 and MLXIP expression and cumulative survival of patients with ovarian cancer in the context of
concomitant ascites. The cutoffs were determined by survival tree. Kaplan-Meier graphical representation of the survival curves illus-
trates the survival associated with candidate gene expression levels (log-rank).

Translational Oncology Vol. 3, No. 4, 2010 Ascites and Ovarian Tumor Cell Migration Meunier et al. 237
factors, including Ets-2, which plays an important role in the regula-
tion of growth and cell cycle–related genes [28] and protects cells from
apoptosis [29].
The other candidate genes identified in this study have been

linked to tumor growth and apoptosis. For example, CD44, a gene
upregulated in the group of nonstimulatory ascites, mediates the in-
teraction between ovarian carcinoma cells and the mesothelial cells
lining abdominal organs [30]. Through strong affinity binding to
the extracellular matrix in ovarian carcinoma cells, CD44 has been
shown to affect cell adhesion [30] and migration [31] as well as to
increase tumor growth [32]. In addition, increased CD44 expression
is associated with an increased expression of Bcl-2, an antiapoptotic
factor [33]. Mammary tumor cells that are deficient in Irs-2, another
candidate, have been shown to be significantly more sensitive to
apoptotic stimuli such as serum deprivation [29]. Conversely, BRG1/
SMARCA4, a member of the SWI/SNF complex, which is down-
regulated in OV-90 cells treated with stimulatory ascites, is required
for the growth arrest induction and cell senescence induced by p21
[34,35]. These results show that gene candidates that decrease the
migratory potential of OV-90 cells are also involved in growth pro-
motion and apoptotic protection of tumor cells, whereas genes up-
regulated by migratory ascites are involved in cell growth arrest. Taken
together, this suggests that cell migration and growth may be sequen-
tial events during tumor progression where cells need to stop growth
to be able to start migrating. Further experiments will be needed to con-
firm this hypothesis. In line with this is the fact that most gene can-
didates alone are not associated with survival of patients, which also
means that the migratory potential of tumor cell is necessary but in-
sufficient per se to affect the aggressive behavior of tumor cells.
In summary, this study provides evidence for some novel gene can-
didates and molecular pathways that may play an important role in
ovarian cancer cell migration. Combined with our previous research
[11], this work continues to define the importance of studying the
effect of both ascites and the tumor environment on ovarian cancer
cells. Our data also suggest that ascites may contain either positive or
negative regulators of tumor behaviors and can play a role in future
clinical outcomes. Future studies assessing the relative expression of
these candidates in clinical specimens will no doubt help to better
refine those that are important in ovarian cancer progression.
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